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Abstract

In the optical measurement of the Bloch vector components describing a system of N two-

level atoms, the quantum fluctuations in these components axe coupled into the measuring
optical field. This paper develops the quantum theory of optical measurement of Bloch vector

projection noise. The prepaxation and probing of coherence in an effective two-level system

consisting of the two ground states in an atomic three-level A-scheme axe analyzed.

1 Introduction

The properties and generation of an optical squeezed state have been interesting subjects of study

for a number of years. The Bloch vector model of a two-level atomic system interacting with

a laser field, and the use of angular momentum components Jj to represent the N two-level

atoms [1], have also been widely investigated. It is known that quantum systems with dynamical

variables in the form of nonlinear products of the position and momentum operators axe different

from those involving only the position and momentum operators. For instance, in a system

of N two-level atoms, described by a Bloch vector spin angular momentum ,l, the uncertainty

relation, AJ a • AJ 2 > ½l(Ja)], depends on the quantum state of the system, as opposed to that

of Ax • Ap _> _ for the two quadrature phase components of an optical field [2]. The quantum

fluctuations in atoms hence provide an interesting system for the study of uncertainty relations,

and are of practical importance. For example, the fluctuations in an atomic system contribute to

noise that can in principle, limit the accuracy of atomic frequency standards [3].

As a simple example, let us consider the spin model for a single two-level atom with a ground

state I1) and an excited state ]2). The Bloch vector operators axe

where

1

- +  21),
i .

1

i3 - _(_ + _n),

_i = 1i)(./1, i,j = 1,2.

(1)
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These operators obey the usual commutation relationfor angular momentum operators,

[._i, _] = ie_ih_k,

where e_jkisthe Levi-Civitasymbol. Itiseasy to show that fidescribesa spin-_ system.

For a superposition state

Iv)=cos 11)+ sin
where 0, and _ are some angles,we have

1

(-_I)-- _sin0cos¢,

1 sin0 sin¢, (3)(_2)= -_
1

{_3)= -_ cos0.

Clearly,the vector r = ((._x),(_2),(_3))fallsonto the surfaceof a sphere of radius ]. The fluctua-

tions in the components of s are,

i

(A_) = (_)- (._j)2_.4_ (_j)2, j = 1,2,3, (4)

with the fluctuation in the total Bloch vector

1

It isalsoeasy to show that
1 - 2

(_;_).(_;_)>_le,_(s_)i• (5)

Now let us consider the situationfor N two-levelatoms. If there is no mutual interaction

between the atoms, the system can be described by the totalspin angular momentum operator

N

n=l

We assume that all atoms are in the ground state I1) initially or, equivalently, the system is in

the angular momentum eigenstate IS = _-,$3 = -_) (Fig.la). Now we have

N N
/$_)= Z{_,.) = -- 2'

n--_X

and

We hence obtain

NN

(_2) = ._(.2 + 1).

N
(6)
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FIG. 1. Bloch vector for an N-atom system. In a), all atoms are in state [1), and

the mean total Bloch vector (S0} points down. b), (So) is rotated about an axis n to

IS1}. The cones represent the fluctuations in Bloch vectors.

As is shown in Fig.la, the uncertainty in S forms a cone centered on (S0}, pointing inversely

along axis r3, with a conic angle /_0 _ _/t_"N. When a resonant laser field is applied, the Bloch

vector S is rotated from (So} to (Sl}, by angle 0 about an axis n in the Orlr2 plane (Fig.lb).

Now all atoms are in a superposition state as given in Eq.(2), and one can show that the mean

square fluctuations in the components of the Bloch vector S are N times of that given by Eq.(4).

Now let us take a closer look at Fig.lb. When the Bloch vector S is rotated from (So} to ($1},

the cone representing the fluctuations in S is also rotated. The projection of the base of the cone,

which represents the fluctuation, onto an axis, say rl, is merely

:
4

One can obtain similar results for the fluctuations along other axes. The fluctuations in the

Bloch vector components are hence the projections of the Bloch vector uncertainty onto the

corresponding axes. It has been pointed out that the shape of the cone (Fig.lb) can be altered,

and turned to an ellipse, by introducing a non-uniform interaction between the external field with

the atoms [4], or by mutual interaction between the atoms. We see from Eq.(7) that the noise

in the Bloch vector component along rl reaches a minimum point at 0 = _ and ¢ = 0 when the

component is maximized. Yet the shot noise in the radiation field from the atomic medium is

proportional to V_ and also maximized. It is predicted that the total noise consisting of the shot

noise and the Bloch vector projection noise would reach its minimum value at 0 = _ [2].
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2 Theory

In this section, we develop the quantum theory of optical measurement of atomic Bloch vector

projection noise. We will consider the experimental situation of A-three-level atoms in a beam

interacting with spatially separated laser fields. In a A-scheme three-level atom (Fig.2), we as-

sume that dipole transitions between states I1) and [0), and 12) and [0) are both allowed, with

resonant frequencies, w01, w02, and transition dipole moments d01, do2, respectively. We assume for

simplicity that d01 and d02 are orthogonal. First, a resonant optical pumping field is applied to

pump all atoms into state I1). Two co-propagating off-resonant laser fields of frequencies _1,¢v2,

polarizations el, e2, respectively, are applied downstream to prepare the atoms into a superposi-

tion state of [1) and 12). Level 10/ a_tiabatically follows the ground state amplitudes and can be

eliminated. Hence, we are left with an effective two-level system consisting only of ground states,

which do not spontaneously decay. At a later point in the atomic beam, a probe field of frequency

a_, and polarization e2 is applied. This induces an el-polarized radiation field, oscillating between

states 10) and I1) which is homodyned with an external local oscillator field of frequency Wl. We

will show that the homodyne output is proportional to the atomic Bloch vector components and

carries its noise characteristics.

-A l

(D1, e 1

I1>

10>

-A 2

(1)2, e 2

12>

FIG. 2. Level diagram of a A-scheme three level atom.

We first tre.at the preparation process of the atomic ground state superposition. As illustrated

in Fig.3.a, in the lab frame, atoms in the beam moving along axis x with speed v, enter the

coherence preparation region I, between x -- 0 and x - z0. It is more convenient, however, to

calculate the atomic state in the atomic center-of-mass (CM) frame. Let us consider an atom that

appears at an arbitrary position z in the probe region II, at time t'. Referring to Fig.3.b, we see

that the atom entered region I at a previous time t' - z/v and exits region at time t' - (x - Xo)/V.

We start from the effective Hamiltonian

= -?U,,o_]l)(l]- tu_212)(2] + _'. (8)

and the interaction

=---y- + H.c., (9)

488



where we take

flol = n_ ° = (el.dol)E1
h

flo2 = n_ ° = (e2.do2)E2
h

_ (a) Lab frame
m r X

0 x o xx x_+ L

x t'- X'Xo t'
t"v -V-

F

(b) CM frame

FIG.3, Schematic illustration of the experimental situation in a) the Lab frame, and

b), in the atomic center-of-mass frame. Regions I and II are the coherence preparation

and the probe region, respectively.

as the Rabi frequencies for the applied laser field given by

E(t) = elE1 e_i_t + e2E22--T-" --e-_'_' + c.c..

Taking the energy of state ]0), _70 = 0, the atomic state takes the form

I¢(t)>-- ao(t)Io)+ al(t)e i_*'` I1)+ a2(t)e '_02'12).

We obtain from the SchrSdinger equation,

where

•f/ol . _o2

ao(t) = :--_--e-'"" a,(t) + ,-Te -'a2` adO,

hi(t) = ilt._ e ial` ao(t),

h2(t) = ilt'_°.2 e ia2t ao(t),

(10)

(11)

A1 = wj -- w0i, j=l,2

are the detunings. When ill, f12 << AI, A2, we may adiabatically eliminate level 10) by defining

ao(t) = B,(t)e-i_xlt + B2(t)e -i%t, (12)
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where

Eq.(ll) then becomes

Bl(t) = nol2A_a_(t),
No2

B_(t) = 2A_a2(t).

(13)

The initial condition of the atomic state as given in Eq.(lO) is

a,(t'-z/r) = 1,

a2(t'- zlv) = o, (14)

or that the atom is in state Ii/ when entering region I at time t' - x/v.

When the atomic ground splitting w21 << A_, As, and A_ _. A2, If/oil _. If/o21, we may define

the light shift frequency

the Raman Rabi frequency

and the net detuning

A = Im°'l_ In°_l_
2A1 2A2

(15)

(16)

fhof_o2 fhof_o_

/_a= 2A2 _" 2AI -I#Rlei_'

A - al - A2 = (_1- _2)- _n.
Eq.(13) can be readily solved by changing variables

a,(t) = Al(t)e 'atn e-i f ' d,,x(,,)n,

a_(t) = A2(t)e -ia'n e-' f' d"X('dn,

Al(t) = cos[ll#nl(t-t'+z/v)],

A2(t) = ei_sin[2l_R](t-t'+z/v)].

which yields when A << I,SR[.

Hence we obtain the atomic state for an atom which leaves region I at time t' - (z - Zo)/V and

will arrive at position z at time t', as

iaft,-'-:_._ ei_,(t,-'_ • )z-Z°)e " • ' I1)
I)

X -- XO) e_ -i_- tt'-_, £:_-_, . ei_2(t '-_ )12 )
1)

I¢(t' z- zo)) = A,(t'
I)

+A2(t'

e • 0 e_i(wl_oa)(t,__ )
= cos _ I1)+ e'* sin _ 12), (17)
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where
XO0 = I RI--,
13

is the Raman Rabi area. All common time dependent phase factors in Eq.(17) are left out, as

these will not affect the atomic coherence I_12).

Now let us closely examine the probe region. As illustrated in Fig.4, a probe field

 p(t) = e2 ye- ' + c.c.

is incident onto the atomic beam at region II, and introduces an interaction Hamiltonian

hN2 e_i_ t _.U)
_'(J)(t)- 2 "o2 + H.c., (18)

for the j-th atom at position z at time t. Here f_2 = (do2-e2)_'p/h is again the Rabi frequency for

the probe field, and &(o_) = 10)(21 is the SchrSdinger picture operator for the j-th atom.

I2

ELO ---e -imlt 1

>

atomic beam N

0 x 0

Eou t = ESC + E 1

probe _ Ep ---e "it_2t

FIG. 4. Schematic diagram of the homodyne detection of the probe-field-induced
Raman transition field.

It is convenient to use Heisenberg equations in the atomic CM frame for operators &o{_)(x, t),
etc., which are

(_-iw2,) _r_)(Q -- 0, (19)

and

(0 "r ) ft_ e_,n t _)(t),+ _ - iwo, _{o{)(t) = -i -_- (20)

where 3' is the spontaneous decay rate of state 10). 7 is small in the experiment so that noise

terms in Eq.(2O) will be neglected. Eq.(19) can be readily solved for the evolution between times

491



t'- (x - zo)/v when the atom leaves the preparation region I, and f in the atom frame:

tt-t + "-,-.:_-] (21)o_i)(t) = _.(_),+,x- xo)e,,_, , .-._21 _,_
U

b_)(t) is now determined from ,'2,_O)t+'_,+ (x- Zo)/V) whose expectation value will be evaluated for

the atomic state I¢(t'- (z - zo)/v)) in Eq.(17). Using Eq.(21), Eq.(20) is solved

.n_ t" " e-(_-+""')(''-'')a'_{)(t,)
_°(1)(t')= -'T J,,-.--_:dr1e'_"

._ t a_(l)(t' _,- xo), (221_, -i e/me ei_n' _ 2 + iA_ v
2

where we assumed that 7 (x - Xo)/V _ 1.

Note that in the lab frame, the j-th atom is at position x at time t'. Hence we obtain from

Eq.(22) the atomic polarization

P(x,t') (x _ dao5 (j) (23)lo (z, t') + H.c.,
J

where

--(,)tx n_ e_,,_,,_,_,_._,_}{)(t, :,,-xo), (24)
"Io_ ,t')= 2A2 v

under the assumption that the detuning A_ >> 7, the spontaneous decay rate.

Now if the atomic dipole moment dl0 and hence P axe orthogonal to the polarization of the

probe field Ep, the optical radiation field due to the atomic polarization P

E. = -2riklP, (25)

can be separated using a polarizer from E r Here kl is the optical thickness of the atomic beam.

Adding the vacuum field _71 of the same polarization as/_o, we obtain for the positive frequency

part of the total output field from the atomic medium

E(+) _'_+) E_+) (26)o.,(t) = (t) + (t)

where

/:i+)(t) = i:rE,(t) Z _-"","-._ a_)(x,t • - +0). (27)
j v

(doz" e2) (d01" et )
7" (x rkl p hA2

is a dimensionless scattering coefficient, where p is the number density of the atomic beam, and

el, e2 are the polarization unit vectors of the probe field £p and the scattered field Eo_t, respectively.

J_o_, is mixed with a local oscillator field ELO(t) "_ ELo e -i_'a_ in the homodyne detection

scheme illustrated in Fig.4. The output signal n can be written in the operator form as the

difference of photo-currents I1 and I2,

(t) = i,(t)- h(t)
_(+) k.(:,) (28)o( E[o (t) . r_o,,, (t) + ELO (t) . (t).
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Using Eq.(27), and (17) for the atomic state, we obtain

M

i
x - Xo)) + c.c., (29)

t_

where (5_ j) (t_ ___a)) is evaluated for the atomic state I¢(t __._a)) given in Eq.(17). The photo-

current difference (fi (t)) can be written in terms of the Bloch vector components (sl), and (s_) of

Eq.(1). Then Eq.(29) can be further simplified

(¢z(t )) = M IT"E_ogp l sin0 cos[(wl-_o2-w21). (x- xo)
I)

+ ¢0], (30)

where M is the number of atoms in the probe region, and ¢0 some reference phase. Eq.(30) gives

the usual Ramsey fringe pattern [5].

Now let us evaluate the fluctuations in the atomic Bloch vector components. We calculate the

power spectrum of the homodyne output signal n (t)

1/S(w)=_ dr(h(t)h(t+r))e -i'_'. (31)

After some algebra, we obtain

IELol2 -- MIT'I 2 IELol2IE,I2A (w) (On - &_)_,
^ 2

+ M2ITI2IELol2IC, I2 (gr,: + a2,)_ 6(_)

+ M 17"12 IELol 2 le,12A (w) [1 - (5,_ + 5:,>_], (32)

under the assumption that the net detuning A is small so that A • xl/v << 1, where xl is the

distance between the preparation region I and the probe region II. IELol _ is the intensity of

the local oscillator field, and I_:_]2 the intensity of the probe field in units of photon number per

second. A(w) is a spectral function that centers at w = 0, with a spectral width of order of the

transit bandwidth of the probe region. (On - 522)_, = cos0, and (F12 + _)_, = sin0cos ¢ are

components of the Bloch vector expectation values evaluated for the atomic state Iq0) given in

Eq.(2).

Now let us closely examine the four terms in Eq.(32). The first term is clearly due to the shot

noise in the homodyne process. The second term is the reduction of vacuum shot noise level due

to Raman absorption. It can also be viewed as the shot noise associated with the spontaneous

Raman transition. The third term is proportional to M 2, and centers at w = 0, represents the

power spectrum of the stationary Ramsey fringe signal of Eq.(30). The last term is the phase C-

dependent Bloch vector projection noise given in Eqs.(4) and (7).

3 Summary

In this paper, we developed the quantum theory for the experimental study of the Bloch vector

projection noise. Eqs.(30) and (32) are the primary results. In a A-three-level atomic system, when

two off-resonant Raman fields are applied, the upper state adiabatically follows the ground state
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amplitudes and the A-scheme is hence reduced to an effective two-level system. Decayless ground

state coherence is prepared. By probing with one optical transition, and detecting the induced

transition between the other ground state and the upper level with a homodyne technique, we can

measure the Bloch vector components as given in Eq.(30). The photo-current difference in the

homodyne scheme also yields the noise characteristics of the Bloch vector components as given in

Eq.(32).

An experimental study is currently being conducted using a wide-angled supersonic ytterbium

(Yb) atomic beam. The 556 nm transition of 171Yb IS ...sp transition is used. In a 2.6 kG

magnetic field, the 1¢1Yb ground states of nuclear spin I - ] are split by 2 MHz and form a

A-system with the upper state IF - _, Fs -- ½). Doppler shifts in the corresponding a + and

r transition in the wide angle atomic beam are Zeeman compensated [6] simultaneously by a

quadrupole magnetic field. With this technique, the transition linewidth is narrowed to a few

MHz for an interaction path length I of 2.5 cm. The Ramsey fringe pattern of Eq.(30) has been

observed.
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